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Abstract
We describe all Euler partial diff erential operators which act on the space of real
ana-lytic functions and we identify them among the Taylor multipliers on these spaces. Partial
diff erential operators of the form

= o e a of
f=—aPf, D =D;"--Dy D;(F)x):=q, (Xj]dx (x) +q;0(x;)f(x),
i)

where g; 1,450 : (a;,b;) — C, are called generalized Euler diff erential operators whenever
all D; are conjugate to the classical Euler diff erential 3, 8(f )(t) = tf(t]. We find criteria
when a linear diff erential operator with analytic coeffi cients on the space of real analytic
functions is a generalized Euler diff erential operators. It turns out that this happens for
a wide variety of linear operators with variable coeffi cients. Using our earlier results on
solvability of classical Euler operators of finite order we then study the question of surjectivity
or “big image” for generalized Euler partial diff erential operators with analytic coefficients,
i.e., global solvability of the considered equations in spaces of real analytic functions.

I.  INTRODUCTION

Unfortunately, there is no general theory of linear partial diff erential equations with variable
coefficients as good as the theory for constant coefficient operators (comp. [13], [12]). Thus it
makes sense to look for and analyze nice simple classes of variable coefficients linear partial
diff erential operators and in the present paper we study such a class in order to get global
solvability of the corresponding equations in analytic functions. This will be the first main aim
of the paper.

Let us take Dy,..., Dy to be general linear diff erential operators of order one with analytic
coeffi cients of the form

of

D;(f)(x) = Ds(x;, 0;)(F)(x) = Q_.i,l(xj)g(x) + qz0(xs),
i

where g;.1, g0 : (aj, b;) — C are real analytic functions (i.e., they belong to A (ay, b;)) possibly
vanishing at some points. We will characterize those operators D; : A (a;, b;) — A (aj, b;) which
are conjugate to the Euler diff erential operator

G A (K ki) — A (k- k), O (f)(x) = xfi(x),
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for some -oo < k- < k, € o (see Theorem 3.1). It turns out that this holds if and only if g;,
is real valued and either has no zeros or has exactly one zero v € (ay, b;) with q}’l(u) = 1 and
Gjo(u) = 0. Therefore there are quite a lot of operators D; conjugate to &. Clearly, in this case
also the linear partial diff erential operator with analytic coeffi cients of the form

) b3 ) 4
f>— D% = a.D"p*,.. DY a €N’
o a

is conjugate to the classical Euler partial diff erential operator

> >
f >— a0%f := aaﬁ“i . ..6“;}‘,

o [=3

where a, are constants and & (f)(x) = x; dgxi (x). The former operators we call generalized Euler
difterential operators. Please note that we have obtained in [8] a deep theory on surjectivity (or
“big image”) of classical Euler linear partial diff erential operators. Via the conjugation relation
this automatically produces a corresponding theory for generalized Euler partial diff erential op-
erators, see Section 4. Therefore we obtain surjectivity results for a wide class of linear partial
diff erential operators with variable coefficients or results describing closed image of these
opera-tors, 1.e., results on global solvability of these linear partial diff erential operators with
analytic coeffi cients.

More precisely, in [8] we characterized when Euler partial diff erential operators of finite
order have “big” images in spaces of real analytic functions and, in particular, we found many
examples of surjective operators of that type. Using the conjugation relation mentioned above

we are able
to characterize surjective generalized Euler diff erential operators of finite order on the space of
real analytic functions A ( ‘Lo(aj, b7)), —oo = a; < b; = +oo, for all g;1 having no zero (see
Corollary 4.2, Corollary 4.3). Moreover, in case all g;, have exactly one zero (and of order one)
then we characterize when the corresponding generalized Euler partial diff erential operators
of
finite order on A ( ;LD{GJ-, b;)) have a "big” image (see Corollary 4.6).

Please note that surprisingly the conjugation in Theorem 3.1 can alwayvs be given by a
weighted composition operator V = C, .. (so by substitution and multiplication, see Theorem
3.2),

(1) CowlF)(x) = wix)f(k(x)),

where « is a real valued analytic diff eomorphism and w is a non-zero complex valued weight
function,

K(X1,eae, Xg) = (Ke(X1), s KalX4)),  Wixp,..., Xg) = wilxg) ... wy(xy)

and k; are analytic diff eomorphisms. If g;; has a zero at u; then k;{u;) = 0.
In Theorem 3.6 we also characterize when a general first order linear diff erential operator
with analytic coefficients,

D(f)(x) = g1(x)fi(x) + go(x)f(x)

is conjugate to & on some invariant subspace of D— this is proved under the additional assump-
tions that g, is real valued.

The classical Euler diff erential operators are extensively studied on spaces of analytic fune-
tions for one variable (see for instance, [3], [15], [16], [18], [10]. [20]) and recently in that case
results on surjectivity were obtained by the authors (see [7]). For many variables see our paper [8].
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Euler operators belong to the widely studied class of diff erential equations with polynomial
coef-ficients (see [1], [21]). Unfortunately, the authors could not find the basic facts on Euler
partial diff erential equations in the literature (in the several variables case) — we fill this gap in
Section 2 and this is the second main aim of the paper. In particular, we characterize in
Theorem 2.2 .

those sequences (da)q nv for which the operator @.8" is well defined on the space of real
analytic functions A4 (Q), @ R? open, generalizing to several variables the earlier results of the
same authors for the one variable case [5, Section 4].

Everv monomial is an eigenvector of every Euler diff erential operator so they are
examples of so-called Hadamard type multipliers (or Taylor multipliers, comp. [8]) studied
extensively in [5], [6], [7] (for the one variable case) and in [10], [8], [0] (for the several variables
case). We identify which multipliers are Euler diff erential operators (see Corollary 2.5).

Now, by analogy to classical Taylor multipliers, we call an operator M : A(Q) —» A(Q)
to be a k, w-multiplier if for any a € N? the function wk”, wx"(x) := w{xh«“l[xl] e ﬁﬂd{xd},
is an eigenvector of M. Here k; : R—R is an arbitrary analytic map without critical points
with x{u) = 0, w(x) = wy(x,) ... wylxy), where w has no zeros. Itturns out that every
k, w-multiplier corresponds to a “classical” Taylor multiplier and wvice versa wvia (1) and then
generalized Euler diff erential operators with

Ky (t)w)(t)

qia(t) = giolt) = _W

K.

iy
Kl (1)
correspond to “classical” Euler diff erential operators. So the results for Euler diff erential operators
proved in Section 2 and the results on multipliers proved in [10], [8] and [9] and the other papers
mentioned above transfer in an obvious way to results on generalized Euler diff erential
operatorsand k, w-multipliers, respectively. We omit the details.

Let us recall that a linear continuous isomorphism V : X — Y conjugates the operator

T:Y¥ — ¥ with the operator S : X — X if and only if the following diagram commutes:

Yy —— v

v v
X —— x
Please note that in that case T and S have the same eigenvalues and, if V is a topological iso-
morphism, with isomorphic eigenspaces and the same spectrum. Of course, conjugate operators
are either both surjective or both not surjective. If X and ¥ are spaces of real analytic functions
(as mostly in our paper) then every continuous linear isomorphism V : X— ¥ is automatically
a topological izomorphism since the open mapping theorem works for surjective maps. Unfor-
tunately, if ¥ is only a closed subspace of the space of real analytic functions then this is not
always the case since ¥ might not be ultrabornological and so the open mapping theorem might
not work (see the information on the space A (Q) below).
Let us denote by M.. a € RY, the dilation operator

Mo (f){x) := flax),
where as usual ax := (gix1,..., 0axg) for a = (a.,..., az) and x = (x4,..., xs) € R?. Define
R, :=R\{0}, |z] = [(z1,..., 24)] := |24 + -~ + |24l

ﬂl DR
1

O:=(0,....,0), 1:=(1,...,1).

Nalz) =2" =2 . z‘;d, for any a € N,

www.ijceronline.com Open Access Journal Page 28



Euler Type Partial Differential Operators on Real Analytic Functions

Let us recall that the space of real analytic functions A (Q) on an open set O © R? is endowed
with its natural topology ind ,H(U), i.e., the locally convex inductive limit topology, where U C
C9 runs through all complex neighborhoods of . The space A (Q) is both ultrabornological and
webbed so the closed graph theorem for operators on A (Q) and the open mapping theorem for
surjective operators work. Nevertheless, a closed subspace of A (Q) need not be ultrabornological

so the open mapping theorem for operators from A (Q) onto a closed subspace of A (Q) need not
be true. For more information on this space see the survey [4]. For analytic functionals see [23].

Let 0 © R%be an open set. We denote by M (Q) the set of all classical (Hadamard) multipliers
on A (Q), i.e. the class of all continuous linear operators

M : A (Q) — A (Q) such that M(£)(x) = mx" for any a € N°.

The sequence (m,), of eigenvalues related to the monomials is called the multiplier sequence.
The dilation set is defined as follows:

Vv(Q):={x:xQc Q} = {x:xy € Q}.
vELD

Clearly, if Q is convex then V (Q) is convex as well, see [5] and [10] for more details on these sets.
The following central result from [10] will play an important role for classical multipliers:

The Representation Theorem 1.1 Ler Q c RY be an open set. The map
B:A(V(Q) = M(Q) © L:(A (Q)), B(T)a)y) = (aly:), T}, T EA(V(Q)), g EA(Q),
is a bijective continuous linear map with a sequentially continuous inverse and the multiplier

sequence of B(T) is equal to the sequence of moments of the analvtic functional T, i.e. to

(XT) Jaener . d i i
Moreover, if M is a multiplier on A (Q) then for any y € Q N R% the linear continuous

Sfunctional T defined as

(2) T=581° Mys M> My, : A((1/)Q) = C,

where My(g)(£) := gly€) and &1 denotes the point evaluation at 1 = (1,..., 1), extends to a
continuous functional on A (V(Q)) (not depending on y) and M = B(T).

For non-explained notions from Funectional Analvsis see [22].

2 Euler partial diff erential operators

In this section we consider Euler diff erential operators of infinite (and finite) order of many
vari- ables. The one variable theorv is classical — although the authors could not find its
multivariableanalogue in the literature but the proofs of the results in this section for the many
variable case are mostly completely analogous to the one-dimensional situation. We present
them here just for the sake of convenience.

We will use multiindices a = (ay,..., ;) € N9 Moreover,

lal=a,+ -+ +a; and a!=a;la,!... a4l
Let E(z) = z o« ¢ 02" z g €9 be a formal power series of d variables. We say that the
associated Euler diff erential Dgerator

— g . o gl qu? o
E(9) = a7, where 3" := 131 1‘3‘2 ﬁd

aENY
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acts on A (Q) , 0 © R%an open subset, if for any f € A (Q) the series
z o
a,0"(f)
aeNY

is pointwise convergent on Q.
We call an entire function f € H(CY) to be of exponential type zero if for any € > 0 there is
a constant C such that for any z € C? holds

f(2)] < C exp (elzl),

where |z| = |21+ +|z4|. The class of entire functions of exponential type zero will be denoted

by Exp({0}).

.2 B . .
Lemma 2.1 A formal power series ne 02" of d variables represents an entire function of
exponential type zero if and only if

al
(3) Ye>0 supla |_ < oo,
a  Telal
Proof: The proof is as in the one variable case.
If |a ] = M;'_Iul then
Z . Zmeld v T (elml) (elzal)
= 1 |21| = M ll..... 0l|
cgeNd a2 = g al lza] = aeNd a @
= M exp(e|z]).
Now, assume that f is of exponen}ial type zero, then
- t
lg | = Lt |dt,]... |dt 4,
(P20 Lo L1 N | ¥

where C is the distinguished boundary of the polydisk at zero of polyradius (Ry,.... Rs). Choose

R; = 5;‘ then by Stirling’s formula

exp(lal) |af (2e)1™
] = C4 €
SRR P L

Q
Now, we present the multivariable analogue of [5, Th. 4.1].

z
Theorem 2.2 Ler E(f) = Sxn¢ a,3" be an Euler diff erential operator. The following asser-
fions are equivalent.

(a) E(3) acts on A(Q) for every open non-empty set Q0 C RY,
() E(3) acts on A (Q) for some non-empty open set Q € R

fc) The series st 02" is convergent on C%and the corresponding entire function E(z) is
of expommﬁa? type zero.

(d) For any x € RrY and any function f € A ({x}) there is a neighbourhood U — lod of x such

that the series gene0.9f is uniformly convergent on U.

www.ijceronline.com Open Access Journal Page 30



Euler Type Partial Differential Operators on Real Analytic Functions

(e} For every open non-empity set Q C RY the map E(8): A(Q) = A(Q) is @ Hadamard
multiplier with multiplier sequence (E(a))gene.

Remark 2.3 The implications (e3=(a) =(b) are obvious. The implication (b)=(¢) is proved
for one variable in [5, Th. 4.1]. The implication (c}=(d) and (e) is known for the one variable
case, see [11, Th. 11.2.3]. The proof of (b}={c) #d) for the many variables case is similar to
the one variable analogue — we present it for the sake of convenience.

First we need a lemma.

Lemma 2.4 Letra,z €C, a z Of)(x) = xfilx). Then

1 _  Palz a)
a—-z (a-z)™1

3"

where P, is a two-variable polynomial such that
e |P,(z, a)| = nlf", whenever max(|z|, |a|) = r;
s |Pn(1+ig 1)| = n! for any € ER.

Proof: The first part is proved in [11, Lemma 11.2.1, Corollary]. The last part is proved in
the proof of [5, Th. 4.1, proof (b)=(c)]. Q
Proof of Theorem 2.2. (b)=(c): We define

for some fixed w EQNRY £>0. Clearly. g. e A(RY) c A(Q) . If

d
flz) := _

—z
j=1 /

then since the dilation M, b = %l, and the diff erential operator §; commute we get

F*(g)(w) = FF)NL +ie,....., 1 + ig).

Hence, by Lemma 2.4,

P (1+ig1). al

| (ge)(w)| = i (—ig)5*t Z lal+d”
Therefore, if Za a,9%(g.)(w) converges then
a!
sup |G”|el_ﬂl < co.

aeN?

By Lemma 2.1, £ is an entire function of exponential tvpe zero.

(©)=(d): Let f be a holomorphic function on a neighbourhood of € R? containing the
polydisk D centered at x with polyvradius (246,..., 28) and distinguished boundary C. Let 7 be
contained in the polydisk D; centered r’]t x with polyradius (4,..., §). Then

flz) = £(t)

(2 c (ty —z1) ... (ts — z4)

dt, ... dtd,
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By Lemma 2.4,

I

a 9°flz)= 1 2 Y 4 Pz t;) £(t) bty At
m=|al|=n (27i) € m=|al=n j=1 (t — z))% j=1 (t; — )

Choose r so big that max( z{,|t;|} = rfor allj and z, t in the formula above. By the assumption,
there is a constant M such that

s e
L
laal < al  2r
Hence, by Lemma 2.4, for z € D, we have
b2 . ! 5w .
Gd?af(zl = {ZII:Id ﬁ#ldrﬂ'” |dfd|
(4) “ms|alsn . € m=lal=n It —z
2dmd
= szsé%ﬁ fal—r =20

where the constant M; does not depend on f.

(d)=(e): The assumption means that £($) maps holomorphic germs around x to holomorphic
germs around x. By the closed graph theorem [17, Th. 3.3.4] applied to A ({x}) this map is
continuous. By Grothendieck’s factorization theorem [22, 24.33], for any neighbourhood v = 4
of x there is a neighborhood U@ of x such that E(#) maps H[V ) to H(U) continuously.
Hence, E(3) maps A (Q) to A (Q) . By the closed graph theorem applied to A (Q) (the space
A (Q) is webbed ultrabornological, see [4, Lecture 1]), E(8) : A (@GP A (Q) is continuous.
Clearly,

E(9)(na) = E(a)na.
Q

The next result is known for the one variable case (see [5, Cor. 4.3]) and the proof ean be
easily transferred to the multivariable case except for the implication (b¥{c) where we have to
substitute Wigert's theorem available only for one variable. Essentially the result means that
Euler diff erential operators are exactly the multipliers with support i } — that means the only
ones which act on all open non-empty sets. We present all the proofs for the sake of convenience.

Corollary 2.5 Let M be a linear map on the space of polynomials of d variables. The following
assertions are equivalent.

fa) M extends to a multiplier on A (Q) for every open non-empty set Q € RY,
(b) There is an analytic functional T € A ({1}) such that for every polynomial p holds:

M(p)y)=(ply - ),T).

(c) There is an entire function E € H(CY) of exponential type zero such that M = E(9), i.e.,
M is an Euler diff evential operator with multiplier sequence (E(a))gene-

Proof: (a)= (b): We havethat M : A(Q) — A(Q) for everv convex open non-empty
set 0 &Y, in particular, for some O with V (Q) = { }Thus the Representation Theorem 1.1
implies (b).

(b)=(c): We define

E(z) :=(n.T),

where n.(x) = exp(z, log x1+ +2z, log x4) for x close to 1. Clearly, (E(a))y 2 is the multiplier
sequence for M.

By Theorem 2.2, it suffi ces to show that E is entire of exponential type zero since then
E(@) : A (Q) A4Q) is a linear continuous multiplier extending M (with the same multiplier
sequence).

Since T is an analytic functional with support in {1}, by a several variable version of
the Kothe-Grothendieck duality [24] the functional T corresponds a holomorphic function f €
Ho((C \ {1})9), such that .

| 1 _|
(@7 =) - f(wiglw)dw,
(210 LR
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where y; is a curve in €\ {1} of index 1 with respect to the point 1 and y; x - - x yy is contained
in the domain of definition of both F and g. Since n, is defined on {w : ¥j Re w; > 0} so the
choice of y, x -++ x y; does not depend on 7 for calculating ( 1, T) . Thus E, is entire. Finally, if

IF(z)] = C on yy = - -+ x pg we have
! c I '
|E(z) |= exp \ ¢ (Re z;log|w;| - Imz;argwy) [dwl].
2m)? Ve j=1

We can choose yy,. .., g so small that |argw;| < & and log |w;| < &, hence
|E(2)] = C exp(2g|z|).

(c)=(a): Follows from Theorem 2.2. Q

3 Conjugation relation

Now, we consider a general linear ordinary diff erential operator with variable coefficients
D, D(f )(x) := q.(x)f 1(x)+ qo(x)f (x), where g, g, : (@, b)—C are arbitrary real analytic functions.
We clarify the relation of this operator to the classical Euler operator &, &f )(x) = xf/(x) on
spaces of real analytic functions. Please recall that a linear continuous isomorphism V:X Y
conjugates the operator T : Y with the operator § : X —X if and only if the following
diagram commutes:

Y — Y
v v

X = x.
Please note that in that case T and § have the same eigenvalues, and in case V is a topological
isomorphism, with isomorphic eigenspaces and the same spectrum. The main theorem of this
paper is the following one:

Theorem 3.1 A general linear diff erential operator of first order D : A (a, b) —» A (a, b),
D(f )(x) := qi(x)f (x)+go(x)f (x), where g, g : (a, b) = C, —o0 = a < b = +00, be real analytic
functions, g1 non-constantly zero, is conjugate to the Euler dif erential & : A (c, d) = A (¢, d) for
some -0 = ¢ < d = +oo if and only if the map q, is real valued and if 0 € (c, d) then q, has
exactly one zero u € (a, b), gi(u) = 1, go(u) = O while if 0 & (c, d) then g, has no zero.

In fact, we can prove much more determining the conjugation map in Theorem 3.1:

Theorem 3.2 Lef g, q, : (a.b) - C, —o0 = a < b = +oo, be real analytic functions, g,
non-constantly zero. Define a general linear ordinary diff erential operator of first order D:

D(f)(x) = q1(x)f1(x) + golx)f (x).
The following assertions are equivalent.

(a) The general linear diff erential operator of first erder D : A (g, b) — A (a, b) is conjugate to
U:Al(cd) = Alc d) for some -0 = c<d < +oo.

(b) The map g, is real valued. If 0 € (c, d) then g, has exactly one zero u € (@, b) and ¢} (u) = 1,
golu) = 0. If 0 € (¢, d) then g1 has no zere.

fc) There is an analytic diff eomorphism
Kk :(a, b) — (k- k), —oo < k- < k, < 400,
and a never vanishing weight w : (a, b) —= C such that the weighted composition operator
Cow t A (k- k) = Ala, b), Couwlf)x) = wix)f (k(x)),
conjugates D : A(a, b) = Ala, b) with 3 : A (k-, k,) = A (k-, k.).

Moreover, if these conditions hold then n € N is an eigenvalue with the eigenspace spanned by
kK"w and if q, has a zero then these are the only eigenvalues.
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If q, has no zero then 0 < k- <k, = +oo and for any v € (a, b):

I, .
e if g, >0 then k- = 0 if and only if "Gﬁg‘t is divergent and k, = +oo if and only if
1
b_a
v gat

fit is divergent; {
« if g, <0 then k- = 0 if and only if bt gt s divergent and k, = +co if and only if

|
Ta_gy(t . -
If gi(u)= o%;‘%ﬁﬁ;@”&?’& (a, b) then —oo = k9410 < k, < +o0 and
* k, = +co if and only if bvﬁgt is divergent for v € (u, b);
1

e k- = —co if and only if " 1q1?'5 is divergent for v € (a, u).

a
Proof: (a)=(b): Let us denote by V the conjugation map, i.e., a continuous isomorphism
V:A(cd — Al(a b) such that
Ala,b) —F Al(a,b)
v Ov
Alc d) — Al(cd)

is commutative. Clearly, since all natural numbers are eigenvalues of @, so they are also eigen-
values for D. Moreover, the corresponding eigenspaces are one-dimensional.
We denote by n,, n,(x)= x" and set w := V(). We choose an open interval /| < (g, b)
such that g:(x) = 0 for any x €/ and set fpr fixed y €/ such that w(y) /=0
I
" q.(t)

k is a real analyvtic function on / and x(y) = 1. Set k,, := k"w on /.

k(x) 1= exp dt for x € I.

(i): There are a, € C such that V(n.) = ank, on [ for anyv n € N.
Proof. We first prove that &, is an eigenvector of D on / with the eigenvalue n € N. Notice that
(5) gix' = k on | and g:w' = —gow on (a, b).

Hence we get on /
gk, = NG,k " ew + g K"wi = ne"w — gok"w = (N — gk,

Since also DV (M), =nV(n,) s and the eigenspace of D for nin A (/) is one-dimensional, the
claim follows.

(ii): The function g, is real valued on (g, b).

Proof. We first prove that k is real valued on /. Since x/(y) = 1/g:(y) /= 0 we may shrink /
(keeping y € 1) such that x: / —C is an analvtic diff eomorphism onto a curve y — C (use
the holomorphic inverse function theorem) and w does not vanish on /. Thus the weighted
composition operator

Cow A=A, Coulf)(x) = w(x)f(k(x)), x€1,
is a topological isomorphism with inverse
S=C @ TA) = A S(f)(x) =W(x—l{x)}, xEy.

M

With R(g) := g, for g € A (a, b) we set
L:=5* R V:A(cd)— Ay
Then L is continuous and linear and we get b((( \ \
= b

LP)x)=S° Re V(P)x)=Ce1 1

for P(x) = -0 b;x’. Since 1 = k(y) € v we can apply the evaluation 8, at 1 and get

T: =6 L:Alcd)—C, {(T.Nay = an for every n EN.
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Notice that T is a continuous analytie functional with supp T € (c, d).
If there is y, € f such that & = x(y,) £ R then for

MA)(2) == f(&2), My (f)(2):=Ff £,

o~

we have the following continuous linear functional

Ty =8, M;> Lo Myy: A((1/0(c d)) = C, ( Ty na) a, foreveryn €N.

Please note that
M;o Lo Myg: A((1/Q(c d)) = A ((1/Qy)

and ﬂ(Lll =1 €(1/0y so T, is a well defined analytic functional with supp Tic (1/0(c, d).

Since T and T, have the same moments they are equal on entire functions which are dense
both in A (¢, d) and in A ((1/0)(c, d)). Therefore T = T, on the space of entire functions and T
has two convex compact carriers

K c(cd) and K, < (1/0)(c, d).

By the proof of [14, Theorem 4.5.3] for n =1 the Borel transform B of the Fourier transform T
can be analytically extended to C\K and to C\ Ki, hence to C\(K NK:) D C\((c, d)nic, d)/7).
If 0 & (¢ d) then (¢, d) N (¢, d)/Z = 0, hence B is an entire function, that is, supp(T) = 0; a
contradiction. If 0 € (¢, d) then (¢, d) n (¢, d)/¢ = {0} and supp(T) = {0}.

Since { T, n,) =a, we then have

v R>0 supR'|a,| < oo.
n

Since L(n,) = a.n, this implies that [ acts continuously from H({0}) into H(C). Therefore

L(A (c, d)) © L(H({0})) © H(C).
This is impossible. Indeed, for f € A (q, b) choose g € A (¢, d) such that V (g) = f. Then

Lig)(k(x))w(x) = (Ccu = L)G)x) = V(g)x) = f(x), x€EI.

Since L(g) is entire, the left hand side is holomorphic on a fixed complex neighborhood of /
(independent of f), a contradiction.

Hence k and x are real valued on /. By (5), g.(x) = k(x)/k(x) € R, for x € | (notice that
Kki(x) /=0 for x € Iby (5)). Hence g, is real valued on (g, b) since g, is real analytic.

(iii): Let g,(u) = O for some u € (@, b). Then g}(u) = 0 and g,(u) = 0.

Proof. The functions f, := V(n,) are eigenvectors of D for n € N, that is,

(6) g (X)fh(x) = (n - qo(x))fa(x),  x € (a,b).

Choosing n = go(u) in (6) we see that g}(u) = 0 because the order of zero at v of f}, plusoneis
exactly equal to the order of zero at v of f,. Also by (6)

!y
n-gft) .

falx) = falc) exp JU<x<sc.
c q1(t)

if g1(x) /=0 for u < x = c. Please note that

) P
C}n— X exp e

1ol = £l o ) . aln

SU <X <C.
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The function f7, is real analvtic on (g, b), hence the function on the right hand side can be
extended analytically across u. Since g, is real valued by (ii) we get

I [
. T ¥ n—gglt . *n—-Re gyt )
(';'] 0= lim “exp dt- = lim exp dt  if golu) /: |
x—sut c qalt) T x—ut c qalt)

gince gl (u) = 0 and hence (n - g5)/g; then has a pole in w.
If go(u) & N we get 0 = f,,(u) = V(n,)(u) for any n € N, hence V(P)(u) = 0 for any
polvnomial P. Since the polynomials are dense in A (¢, d) we get V (f)(u) =0 forany f € A (¢, d)

and V is not surjective; a contradiction.
If go(u) = j for some 1 <j € N then (7) implies that

J

*n_ Reg(t e q .
(8) —co= lim == _quldrz lim (j-n) T (mdtitn /=j
x—=ut ¢ a1 (t) x—u* x 1
since (Re gp - jf)/g: is continuous near u because g}(u) 0. The formula (8) implies that
G —n)gi(u) < 0forn = 0 and n = j + 1, that is, j/gl(u) < 0 and - L/} (v) < 0; a
contradiction.

(iv) : The function w := V() has no zeros.

Proof. Please note that w := V (ng) satisfies (5). Also, w(x) /= 0 for any »=(a, b). Indeed, if
w(v) = 0 then g,(v) = 0 by (5), hence gy(v) = 0 by (iii) and the order of v for g, is at least 2 by
(5): a contradiction to (iii).

(v) : The function g, has a zero at some v € (g, b) if and only if 0 € (¢, d).

Proof. Observe that w spans ker D.
We determine dim ker(D?). If f € ker D* then Df € ker(D), hence there is r € C such that

(Df ) (x) = g1(x)f1(x) + golx)f (x) = rw(x).
Clearly, f(x) = C(x)w(x) for some real analytic function C since w has no zeros (see (iv)). Thus
rw(x) = ga(x)(Cw)i(x) + go(x)C(x)w(x) = gi(x)C(x)w(x)

bv (5) and hence
g1(x)O(x) = r for any x € (a, b).

If g1 has a zero at u € (g, b) then this implies r = 0, and then O = 0. Thus f € span(w) and
dimker(D3) =1.
If g, has no zero on (a, b) then O(x) = r/qi(x), thus
| x

flx) = dt+C, wix), for somer, C; € C,
q.(t)
and dim ker(D%) = 2.
Of course, the same applies to & (for gi(x) := x and g = 0). Thus if 0 € (¢ d) then
dimker(8°) = 1 and if 0 ¥ (¢, d) then dimker & = 2.
By conjugation, dim ker(%°) = dim ker(D?). This completes the proof.

(vi): If g,(u) = O for some u € (a, b) then f,(u) = 0 and gl (v) = 1/m where m is the order of u
for f,. Hence g, has at most one zero on (g, b).

Proof. Recall that £ := V(n1). Let g:(u) = 0. Then gi(u) = 0 by (iii), ie. gi(x) = ai(x-
u) + axlx - u)’ +... with a; /= 0. Also fi(u) = 0 by (6) (for n = 1) since go(u) = 0 by (iii),
ie. fi(x) = bulx — )™ + b, (x — u)™* ... for some 1 < m € N and b, = 0. Comparing the
coeffi cients of (x- u)™ on both sides of (6) we get g} (u) = a, = 1/m. Thus g} (u) > 0 at each
zero u of g,. Since g, is real valued by (ii), g, cannot have two diff erent zeros.

(vii) : If g1(u) = O for some u € (a, b) then g} (u) = 1.

Proof. We will show that m =1 in (vi). Let m > 1, then fi(x) = (x — u)"¢(x) for some real
ana.lyti%.function ¢ with ¢(u) 0. We may choose an interval /, v € I, such that f /™ (x) :=
1

(x—u) "@(x) and w V™ (1) are well defined real analytic functions on / (recall that w := V()
has no zeros on (g, b) by (iv)). Set
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1_1/m

g(x) := £/ (x)w ~""(x) for x € /.
Using (6) (forn =1) we get foru# x €/
1 1
(9) @)FYV0) = a £ F{Tf) = T T - g @)

and hence ql(fllf”')l =1 rfl/l’"ll - go) on [/ since the left and the right hand side of (9) are

continuous on /. Similarly, (5) implies that

(10) ﬁMWMWF—leW%M?
m

Hence
1 'm 'm 'm 1 - 1
@g="f"1-qw"" -7 1- = wq o= T —q gonl.
m m m
Since u is the only zero of g, the usual solution formula for the initial value problem

1
@y = = -qo ¥y ylc)=glo)
m

for u ¢ € / provides an analytic extension gof g to (g, b). Hence N is an eigenvalue of D

[S =
on, 6‘% {Faﬁlc%‘}: .then also of $ on A (¢, d). But 0 (¢ d) by (v), so & has only eigenvalues n  N;
(b) =(c): First consider the case when g; has no zero. Just take for a fixed v € (g, b)
Kk(x) := exp [1 1 dt , w(x) = exp f"_ i) dt
v gal(t) v galf)
If g, > 0 (and if g, < 0) we set
k- = lim k(x), Kk, = lim k(x) (and k- := lim k(x), k, := lim k(x), respectively).
K w—b x—h x—=a

The rest is an obvious calculation. Please note that by the theory of ordinary diff erential

equa- tions all solutions of the first order diff erential equation Df = Af are proportional.
Now, we consider the case when g, vanishes exactly at v (and gl(u) = 1, go(v) = 0). Then

there exists a real analytic real valued nowhere vanishing function r : (a, b) - R such that

gi(x) = (x — u)r(x) and r(u) = 1,

since r{u) = g,/ (v) = 1. Hence r(x) > 0 (since r has no zeroes on (a, b)) for every x € (a, b). We
define two real analytic functions x and w on (a, b) by:

i I
T F*1-r(t * —gplt
K(x) = (x — u)exp i-do dt w(x) := exp =2t dt
u qj(t) u ql(ﬂ
Let us calculate the derivative for x € (a, b)
1 [
(11) Ki(x) = exp 1-rt) 4 o,

r(x) o qalt)

Hence k is a strictly increasing real valued analytic diff eomorphism and we define

k = lim k(x), ky = lim k(x).
x—at x—b=

Finally, we have g« = k by (11) and clearly g,w + gow =0. Hence
D C. () = galw(f © &)+ gow(f * «)

= (@wr + Gow)(f © K) + W(G@uk)(F1 © K)
= Cow OU) -

Since gix = k we have for any fixed c withu<c<b

[

)
1
k(x) = k(c) exp =——dt | x€e(cgb),
¢ aa(t)
hence k., = +oo if and only if xc = E:ft is divergent. Please note that since gq,(u)= 1, for x > u
g1

we have gi(x) > 0 and for x < v we have gi(x) < 0. Therefore divergence of the considered
integral always means divergence to +ca.
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The proof for k- is analogous. Finally, it is well-known that the eigenvalues for & in A (k-, k.)
are natural numbers whenever k- < 0 < k,. So the same holds for the conjugate operator D
and the eigenspaces are spanned by C,.{n,) = k"w.
(c)=(a): Obvious. Q
The authors believe that if D is of order higher than one then D cannot be conjugate to &
but we cannot prove it except in the somehow “trivial” case when the coefficient at the highest
order term has no zeros.

Remark 3.3 If g, : (a,b) — R, u € (a,b), g1(u) = 0, gi(u) = 1, go(u) = O has an additional
(second) zero at some vea, b) then there is no analytic eigenvector of D defined at v. Indeed,
assume that v € (u, b) then, by Theorem 3.2 applied to the interval (g, v), k tends to +co atv
and hence it cannot be extended to the whole interval (o, b). Moreover, if g, has a zero of order
at least 2 at v then there is no analytic eigenvector of D defined near u, see Proposition 3.4
below.

Under the general assumption that g, is real valued we can prove much more. In particular,
we can consider conjugation of the restriction of D to some invariant subspace.

Proposition 3.4 If q, : (a,b) = R and q, : (g, b) = C are real analytic, —oo < a < b = +oo,
u€ (ab) gilu) = giu) = -+ = q[;‘l}(u) = 0, q["}{u) =0, n > 1, then there is no real
analytic non-constant eigenvector of D, D(f )(x) = g(x)f (x)+ go(x)f (x). in A (a, b) defined on

a neighborhood of u for all values A € C except possibly A = gglu).

Proof: By the theory of ordinary diff erential equations such an eigenvector f for the first
order diff erential operator D and for the eigenvalue A € C must be of the form

i,
filx) = Cexp A-gplt) 4
€ i?i'[f)

for some constants € =0, ¢ /=u. It is easily seen that since

1/A

:

14

= (x-up =

for some constant A, f has a singularity at v and cannot be extended as an analytic function to
the whele interval (a, b). Q

Proposition 3.5 Let g : (o, b) > R, go: (a,b) - C, —oco = a <b = + oo, be real analytic and
the operator D:

D(f)(x) = q1(x)f1(x) + golx)f (x)

be conjugate on seme D invariant subspace of Ala, b) to & on some A (k-, ki), —» = k- <
k, = +oo, then g, has at most one zere u € (a, b) and g (u) = 0.

Proof: The result follows by Proposition 3.4 but we give another proof. Conjugation implies
that O must have an eigenvector f, for any eigenvalue n for every n € N. Thus for any n €N

(12) gufh = (n - qo)lf» on (a, b).

Let g,(u) = 0 for some u € (g, b). Choose n € N such that g,(u) /= n. Then (12) implies that
folu) = 0 and comparing the order of the zero u on both sides we see that g4 (v) = 0.
That g, has at most one zero on (g, b) follows from Remark 3.3. Q
Finally we characterize conjugation on invariant subspaces.

Theorem 3.6 Let q, : (a.b) = R, gy : (@, b) = C, —oo = a < b = +o00, be real analytic. Then
the general linear first order ordinary diff erential operator D,

D(f)(x) = q1(x)fi(x) + go(x)f (x),

is conjugate on some D invariant subspace Y of A (a, b) to & on some A (k_, k,), —o0 = k. <
k. = +co, if and only if either q, has no zeros or q, has exactly one zero u € (a, b) and g} (u) /=0
moreover there are 0 <q € N and p € N, such that

1 1 P
u)=", u)=-".
qi(u) q golu) q
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If the first alternative holds then we can choose 0 < k- < k. < +o0 and Y = A (a, b). If
the second alternative holds then —co < k_ < 0 < k, =+ and codimY = p if q = 1. In both
cases conjugation can be given by a weighted composition operator, which is just a composition
operator if and only if g, = 0.

Proof: Necessity. By Proposition 3.5, g; has at most one zero which then is of order one.
Assume that g¢,(v) = 0, g{(v) = A = 0. By conjugation, D has an eigenvector f,, for the
eigenvalue n € N and for everyn € N

(13) g = (n-q0)fn

If n # go(u) then f,(u) = O by (13). Let m(n) be the order of the zero of £, at u. Comparing
the coeffi cients of (x - u)m["] in (13) as in (vi) in the proof of Theorem 3.2 we get

(14) m(n)A = n — golu) for any n € N\ {go(u)}
s0
(15) n-k=[mn)-m@kIA i nk € N\ {golu)}.

Hence 0 # q := [m(n + 1) - m(n)] € Z for large n. If A < 0 then m(n + 1) < m(n) for large n,
a contradiction, since m(k) EN for any k. Hence g€ N\ {0y and g4 (u) = A = 1/g. This proves
the claim if go(w) = 0.

Let go(u) = 0. Then we may apply (15) for k = 0 and large n and get
(16) m(n) = m(0) + nq for large n

and therefore (using also (16)) for large n
ng — m(0) - ng _ m({0) _

g (u)=n-m(n)A= 1 -p/q
]
q q
proving the claim.

Suffriency. In case g, has no zeros we apply Theorem 3.2.
Assume that g1(u) = 0, gl(u) = %, go(u) = =B, q1(x) = (x - u)r(x), r never vanishing. Let
]

|
xq_ gd l
K(X) = (x - u) Ki(x) = (x —u) €xp L g {:} dt
P P " " =qgolt) - pr(t)
wi(x) := (x—u) wylx)=(x—-u) exp dt
u qa(t)
Let us calculate «:

Ki(x) = g(x - u)¥ 'k (x)+ (x - u)“uﬁmk x)
' . g:(x)
- (X _ u)q_J.K (X} g+ JL{E}.
(17) ' r(x)
1 1
= (x-uw)"" Kk (x) .
()
— X
" —
and hence
g.x' = k and, similarly, g,w = —ggw.

This implies
(Do Cowdlf) = qalw(f ¢ K)) + gow(f © k) = quwilf = k) + gucw(fT > k) + gow(f » k)
= —qow(f © k) + w(f1° k) + gow(f © k) = wi(f1° k) = (C,., © TV

Please note that « is a diff eomorphism if and only if g = 1. If g is odd then « is strictly
increasing. Otherwise it is deereasing till v and then increasing. So for odd g we define k- :=
limx—a+ k(x), ks 1= limy—p- k(x) and since k(u) = 0 thus k- < 0 < k.. For even g we define
k, = max (limy_g+ k(x), lim,_p- k(x)) > 0, while we take as k- any number < 0. Clearly if
w Z then p =0 and g, 0 £of course, if g, 0 then p = 0 as gylu) = ). iy

If g =1then Y = ImV consists of those functions having a zero at v of order = p, hence
codimY = p. Q
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4 Generalized Euler partial diff erential operators

Applying the above results we can also consider the case of several variables. Here we take a
families of real analytic functions g1,4, ..., ga1. 1o - - -» Ga0s Gi1 : (@5 b)) = AR, g0 (ay, by) —

C, analytic, g;; with at most one zero u; (and of order ome), q},(u;) = A; € C, A; 0,
9;0(u;) = 0. For the function g;, (if it has no zeros) or for 5‘:‘-3: we can find corresponding

analytic diff eomorphisms k;, j = 1,...,d, of (a;, b;) onto (k;—, kj+) and weights w; according
to Theorem 3.2. Let us assume that for j = 1,...,m the function g;, has no zeros and for
Jj=m+1...,dit has a zero u; and then g;o(u;) =0 for j = m+1,...,d. As usual we define

of

D;(F)(x) = qj,‘l(xj}a{x) + q; o(x; )F(x).
i

Then for any entire function of exponential tvpe zero E, E(z) __Za e 0,2°, the following
operator defined by =

b2
E(Dy..., D@ ) = @D} -+~ D% (g)(x)

aeNd

onA 9 (asb;) isconjugate to E(f,..., 0m AmerBmer,.. -, Adda) n A % (k- ks )
via the weighted compeosition operator €, ,,. where

K(X1,..0, Xg) = (Ko(X1), K2(X2),..00, KalXa)), wix) = wilxy) - - - wylxg).

We can also define generalized «, w-multipliers, i.e., operators for which all functions of the
form

KalX) 1= wix)ra(x:)™t Kalxa)™

are eigenvectors. It is easily seen that these operators are conjugate to classical multipliers —
and thus their theory is “identical” with the theory of classical multipliers. So every theorem on
surjectivity or on algebraic/topological structure (see the papers [5—10]) can be automatically
transferred via conjugation from the classical multipliers to these generalized multipliers. Details
are left to the reader but we give some examples using the papers [8] and [10].

Tt would be interesting to find a criterion for which given linear partial diff erential operator
with analytic variable coefficients P (4, x) the theory applies. The following is a simple necessary
condition — unfortunately it is not fully eff ective since there is no general eff ective way to
findeigenvalues and eigenvectors.

Proposition 4.1 If a finite order gnear partiakdiff erentiad operator with analytic coefiicients
F(0, x) =

’ a

aﬂ[x ] ﬁ
aeENY, |a|=m
is a generalized Euler diff erential operator then there is a polynomial W such that for every
a ENY the value W (a) is an eigenvalue of P(0,x) and there are corresponding eigenvectors
fa such that fy does not vanmish at any point, for every j = 1,..., d, f,; /fo is a real analytic
diff eomorphism (herve e; means the j-th unit vector) and

(£,/fo) 2
= Y q =-q ax
o
il ﬁg} ej/ )%] 0 i1
satisfy the following conditions: q;. is real valued, has at mosaf 8ne zero u; and this zero is of

order one.

Proof: By the very definition P (d, x) is a generalized Euler partial diff erential opera-
tor if there exists first order linear ordinary diff erential operators with analytic coefficients
D;j=1,..., d, conjugate with & such that P (8, x) = W (Dy,..., Dj) for some polynomial W .
Clearly W (Dy,..., D,) is conjugate to W (3,..., 3,) and the latter has eigenvalues W (@) and
by Theorem 3.2 with eigenvectors

FalX1, .0y Xa) = W()ka(x1)™ - - Kalxa)™,
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where k; are real valued analytic diff eomorphisms and w is analytic complex valued without
zeros. Now, k; = f,/fo and w = fo. The statements on g;, and g;o hold of Theorem 3.2 since
k() WI ()
4a(x;) = K () and 0(X;) = -g5,1(x7) wj{x Y

Indeed, the second equation helds since D;w = D;fy = 0. From this we get the first equation

since wk; = f,, P{‘{Ej = Dﬂ( wlel .o Q
First, Lsstfhe thét®m = 4 so 4l G1,1.---, §g1 have no zeros, then for every polynomial P

of d variables by Theorem 3.2, P(D,,..., Dy) on the space A d__o{aj, b;) is conjugate to

P(&y,..., %) on A olki— ki») and Q: olki- ki) < RY. By [10, Section 10], the
latter is [‘ODJUg'ltE' to the p'irhal diff erential Dperaim with constant coefficients P(0,..., 0) via
Ciogs CioglfMx1,..., x4) = fllogx,,..., logx,), on A “_;:D[Iogkj_, logk;,) . Since O, =

;iu (log k-, log k;.) is convex we then can apply Hormander's theory [12] characterizing the
surjectivity of P(d4,..., d;) on A (Q,) by means of a Phragmen-Lindelcf - type condition valid
on the characteristic variety of the principal part of P. For instance, by [10, Cor. 10.5], we get:

Corollary 4.2 If g;1 : (a;,b;) = R, -0 = a; < b; = +co, j = 1,...,d, are real analytic
without zeros, q;o : (ay, b;) — C are real analytic, D;(f){(x) = q;, 1(x,) (x} +q;0(x;)F(x), then
for any polynomial P of d variables the of{emwr \

d
P(D1,..., Dg): A \ {apbj}’f — A \ (g_."!hj}j

Jj=0 =0
is surjective if and only if { \ ( \
d d
P(01,...,90) : A\ (logk;— logkss)) — A\ (logk;—, logk;,)
j=0 Jj=0

I5 surjective.
By [10, Cor. 10.6] we get:

Corollary 4.3 Let P be a polynomial of d variables and of second order Letq,y H . ) R,

-0 = a; < b; = 400, j=1,...,d be real analytic functions with cf'
divergemfor' some ¢; € (a;, b ] Jj= ,d, and ler g;gla;, b;) = C be mae" analyviic, D (f}{x]
q;, 1()(!) Ij)ur)+qlJ olx;)f(x). Then the operator P(D,, ..., Dg) is surjective on A j=0 (aj, b;)

if and om’y if the principal part P, of the polynomial is either elliptic or proportional to a real
indefinite quadratic form or to the product of two real linear forms.

dix and-

Now, consider the case when g, 4, ..., 4, all have exactly one zero u; of order one, g}, (u;) =:
A; # 0. For simplicity we assume that g; 1 is real valued and A; > 0 for anv j. Moreover,
g;0(u;) =0, g; o are complex valued real analytic, D;(f)(x) = g; 1(x; ) - () + g;.0 0 ) (x).

Let us recall that a polynomial P has the halfplane property if it does not vanish on any
z € C9with Re zy,..., Re z; > 0 (see [2] where properties of such polymomials and their charac-
terizations are given, see also [8]). If the same holds for all zE C9 with Re z,,..., Re z; = 0 we
say that P has the clesed halfplane property. The latter property for homogeneous polynomials
is equivalent to the halfplane property plus non-vanishing of P on the canonical unit vectors
(see [8, Th. 8.5]).

There is an extensive literature on the halfplane property motivated partly by applications to
image processing, see the survey paper [2]. In particular the following holds (for the authorship
of the results below see the reference list in [2]).
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Theorem 4.4 (a) [2, Th. 0.1] Elementary symmertric polynomials have the halfplane property
but its closed version if and only if the polynomial is of order one.

(b) [2, Th. 8.1] If A is a complex r = d matrix then (a polynomial of order = r) P (x) =
det(A diag xA*) has the halfplane property where diag x means the diagonal d = d matrix
with coefficients x.,..., xg. It has its closed version only for r = 1.

(c) [2, Th. 5.3] A quadratic form has a halfplane property if and only if it is proportional fo a
form with all coefficients real non-negative and its mafrix has exactly one strictly positive
eigenvector. It has the closed halfplane property if and enly if additionally all the diagonal
coefiicients of the latter matrix are strictly positive.

(d) [2, Cor. 2.9] Any partial derivative of a polynomial with the halfplane property has the
same property.

(e) [2, Th. 6.1] If a homogeneous polynomial has the halfplane property then it is proportional
to a polynomial with all coefficients real non-negative.

The paper [2] contains plenty of sufficient conditions and necessary conditions for the half-

plane property (notice, for example, [2, Th. 7.2]) but the authors claim that there is still no
eff ective algorithm to check this property.
Let us define for / c N9 and v € Q € RY,

A, L Q):={FfeA(Q) |f‘°”{u} =0 fora g1} and A,(Q):=A,,(Q)
Then we have the following observations.

Proposition 4.5 Let P be a polynomial and P, its principal part. Then for any A4,..., A, >0
we have:
(a) P has the halfplane property if and only if P(A1 - ,..., Aa - ) has the halfplane property.

(b) Py has the closed halfplane property if and only if Ppldy -,..., Ag *) has the closed
halfplane property.

fc) If1 = N9 satisfies
(18) BFI forany6=a, agl
then the weighted composition operator C.., maps A, onto A, where
K(x) = (k1(x1),-.., Ka(xa))
and k; analytic diff eomorphism with ki{u;) = 0, w a complex weight without zeros.

Proof: It suffices to show only the part (¢). We apply the Faa di Bruno formula:
z
O © K)w) = caydf(K(u)) - K (u),

where 8 = @ and the analogous formula holds also for x-*. This implies the result forw = 1.
Now, multiplication by w is an isomorphism of A,, onto A4, . Q

Corollary 4.6 Ler g1 : (a7, b;) — R be real analytic with exactly one zero u; € (ayz, b;) which is

of order one and q}fl(uj) =A; >0 for j=1,...,d Let gio: (a; b;) = C be real analytic with

gi0lu;) =0, D(F)x) = g;10x;) ° Flx) + 9;0(Xx;)F(x). Ler P be a polynomial of d variables, of
S

order m. Ler Q := ;LO[GJ-, b;) and u = (us,..., ua).

(a) If the range of P(D1,..., Dg) : A(Q) — A (Q) contains Agingu(Q) then the following
equivalent conditions hold:

(1) The range of Pp,(Dy,..., D4} : A(Q) — A(Q) contains Ay e ,(Q);
(ii) Py, has the halfplane property.
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(b) The following assertions are equivalent:

(i) The range of P,(D4,..., D) : A(Q) = A (Q) contains AN«!\{D},:.-{Q:'I
(i) Pn has the halfplane property and P, does not vanish on the canonical unit vectors,

(iii) The range of P,(D4,..., D) : A(Q) — A (Q) contains A, (Q), where | is cofinite
and satisfies (18) and P, does not vanish on the canonical unir vecrors.

(c) If additionally Pn, does not vanish on the canonical unit vectors, then the following asser-
tions are equivalent:

(i) P(D4,..., Dg): A(Q) = A (Q) is Fredholm;
(11) P(D4,..., Dg): A(Q) = A(Q) has a closed and finite codimensional range;
(1i1) P, has the (closed) halfplane property.
Proof: In all cases P(Dy,..., Dy) is conjugate via C.., to P(A104,..., Agifs) 1 A(Q) —

A(Q), Q. = ‘Lo[k-, ky). Since V() 2 [0, 1)° we can apply [8, Th. 8.1] in (a), [8, Th.

8.5] in (b) and f& Cor. 8.8] in (c). Please note that since “partial inverses” in the above

results correspond to analytic functionals with support in [0, 1]? these results hold for A (Q,),

V(Qy) 2[0,1]° instead of A (RY). The condition (18) in part (b) follows from the proof of [8, Th.

8.5 (e)=(f) =(g)]. The conclusion follows by Proposition 4.5. Q
For polynomials of second order in two variables we get:

1_a2

Corollary 4.7 Same general assumption as in Corollary 4.6. Let Pz, z;) = laj=2 9aZ1 25
be a polynomial of second order in two variables and assume that the principal part depends on
the variable z,. Then the following are equivalent:

(i) The range of P(Dy, D) : A (Q) = A (Q) contains A3+2N2,u{R2} for some B € NZ;

(ii) P(8) is invertible on Ayp(R2) with I(P) D y + N? for some y € N2, where I(P) = {a |
P(a) /= 0};

(iii) One of the following conditions hold:

e P, depends only on the variable z, and Re %,%JE =0;

* P, depends on both variables and P; has the halfplane property, i.e.,
Pylzy, 23) = C(by121 + by3z3)(byizy + byyz,),  for CEC, by = 0.

Proof: This follows as above using [8, Th. 10.7]. . o o Q
A similar theory can be developed also on the basis of Theorem 3.6 giving surjectivity of the

operator P(D;,..., Dy) on a suitable invariant subspace of A ( dj.zo(aj, b)) or closed range of

the operator P(D,,..., D ) containing a “big subspace” of the same suitable invariant subspace.
The details are left to the reader.
To give some taste of the above results let us give a particular example.

Example 4.8 The following diff erential operator is surjective on A (R?):

x Of R o’f x o°f
_ _ — = -1)
Z(f) = (arctan y)x2 +1 0xdy + (e 1) arctan ydydz +6X2 +1 ddxdz
> (coshz+1)7 + (arctan y)(sinx + 2:|—f+2[15"'—1)-_“f
x<+1 dx dy dz

+ 2(coshz - 1 +sinx)f + 3f.
Please note that Z = P(D4, D;, Ds), where

Plx,y,z)=xy+yz+xz+2(x+y+2z)+3
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and x of

Dif)x ¥, 2) = g 5% ¥ D)+ (SN0 (x, v, 2),

of
Da(f)(x, y, z) == arctan ya(X. Y. 2),

a
Ds(f)(x v, 2) = (e - 1}_5

By Theorem 3.2, P(Dy, D5, D;) on A (R?) is conjugate to P (3, &, ;) on A (R?) and this is
surjective by [8, Ex. 10.6] hence 7 is also surjective.

gx, v, z) + (coshz — 1)f(x, v, 2).

References

[1] J.-E. Bjork, Analyric D-modules and Applications, Kluwer, Dordrecht/Boston/London 19093.

[2] Y. Choe, J. G. Oxley, A. D. Sokal, D. G. Wagner, Homogeneous multivariate polynomials

with the half-plane property, Advances in Appl. Math. 32 (2004), 88—187.

[3]1H. T. Davis, The Euler diff erential equation of infinite order, Amer. Math. Monthly 32

(1925), 223-233.

[4] P. Domanski, Notes on real analytic functions and classical operators, in: "Topics in Com-
plex Analysis and Operator Theory", Proc. Third Winter School in Complex Analysis and
Operator Theory, 2010, Valencia, O. Blasco, J. Bonet, J. Calabuig, D. Jornet (eds.), Con-
temporary Math. 561 (2012), 3—47.

[5] P. Domanski, M. Langenbruch, Representation of multipliers on spaces of real analytic
functions, Analysis 32 (2012), 137-162.

[6] P. Domanski, M. Langenbruch, Algebra multipliers on the space of real analytic functions
of one variable, Studia Math. 212 (2012), 155-171.

[7] P. Domanski, M. Langenbruch, Hadamard multipliers on spaces of real analytic functions,
Adv. Math. 240 (2013), 575—-612.

[8] P. Domanski, M. Langenbruch, Interpolation of holomorphic functions and surjectivity of
Taylor coeffi cient multipliers, 4dv. Math. 203 (2016), 782—-855.

[9] P. Domanski, M. Langenbruch, Multiplier projections on the space of real analytic functions
of several variables, preprint 2015.

[10] P. Domanski, M. Langenbruch, D. Vogt, Hadamard type operators on spaces of real analytic
functions in several variables, J. Funct. Anal. 269 (2015), 3868-3013.

[11] E. Hille, Analytic Function Theory, Vol. II, Chelsea, London 1087.

[12] L. Hérmander, On the existence of real analytic solutions of partial diff erential equations
with constant coefficients, Inventiones Math. 21 (1973), 151—182.

[13] L. Hérmander, The Analysis of Linear Partial Diff erential Operators, Springer, Berlin 1983.

[14] L. Hormander, A4n introduction to complex analysis in several variables, North Holland,

Amsterdam 1000.

[15] R. Ishimura, Existence locale de solutions holomorphes pour les équations diff érentielles

d'ordre infini, Ann. Inst. Fourier 35 (1985), 49—57.

[16] R. Ishimura, Sur les équations diff érentielles d'ordre infini d'Euler, Mem. Fac. Sci.

KyushuUniv. Ser. 4 44 (1) (1000), 1—10.

[17] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981,

[18] Ju. F. Korobeinik, Investigation of diff erential equations of infinite order with polynomial
coeffi cients by means of operator equations of integral type, Mar. 5b. 49 (2) (1959), 191—206

(in Russian).

www.ijceronline.com Open Access Journal

Page 44



Euler Type Partial Differential Operators on Real Analytic Functions

[19] Ju. F. Korobeinik, On a class of diff erential equations of infinite order with variable coeffi-
cients, Izv. Vyss. Uchebn. Zaved. Matematika 29 (4) (1962), 73—80 (in Russian).

[20] M. R. S. Kulenovi¢, Oscillation of the Euler diff erential equation with delay, Czech.
Math. J. 45 (1995), 1—6.

[21] B. Malgrange, Equations differentielles @& coeficients polynomiaux, Birkhauser,
Boston/Basel/Berlin 1991.

[22] R. Meize, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford 1997.

www.ijceronline.com Open Access Journal Page 45



